

Surname	Centre Number	Candidate Number
First name(s)		2

GCE AS/A LEVEL

2500U10-1

S24-2500U10-1

TUESDAY, 14 MAY 2024 – AFTERNOON

COMPUTER SCIENCE – AS unit 1 **Fundamentals of Computer Science**

2 hours

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	6	
2.	8	
3.	8	
4.	8	
5.	8	
6.	6	
7.	6	
8.	4	
9.	8	
10.	8	
11.	8	
12.	6	
13.	6	
14.	10	
Total	100	

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The total number of marks available is 100.

Assessment will take into account the quality of written communication used in your answers.

JUN242500U10101

Answer **all** questions.

1. Draw a truth table for the following Boolean expression:

[6]

$$X = P \oplus Q + R.(P + \overline{Q})$$

02

2. (a) Describe the typical contents of a TCP/IP packet.

[5]

(b) Explain network collisions, how they are detected, and dealt with.

[3]

2500U101
03

3. Clearly showing each step, simplify the following Boolean expression:

[8]

$$A.(B + C) + \overline{C}.(A + C) + B.(B + \overline{A})$$

Examiner
only

4. (a) Describe the term 'word length' in relation to a CPU. [1]

(b) Convert the denary number 27_{10} and the hexadecimal number $7E_{16}$ into two 8-bit binary numbers. Add the two numbers together using binary addition, leaving your answer in binary.

You must show all of your workings. [4]

(c) Using the binary number 101.0101_2 , demonstrate truncation to one binary place, and calculate the effect upon accuracy in terms of relative error. [3]

Examiner
only

5. A builders' merchant wants to convert imperial measurements for length (inches) into metric measurements.

The conversion from inches into metric measurements is as follows:

$$1 \text{ inch} = 2.54 \text{ cm}$$
$$1 \text{ inch} = 0.0254 \text{ m}$$

Write an algorithm, using pseudo-code, that will allow a user to input:

- the imperial measurement (in inches)
- whether the output is to be in cm or m.

As the number of values to be input is unknown, your algorithm should terminate when a user inputs a rogue value less than 0.0.

Your algorithm should output a suitable error message for any measurement entered that is not a real data type, for example a, B, z, @.

Your algorithm should be written using self-documenting identifiers.

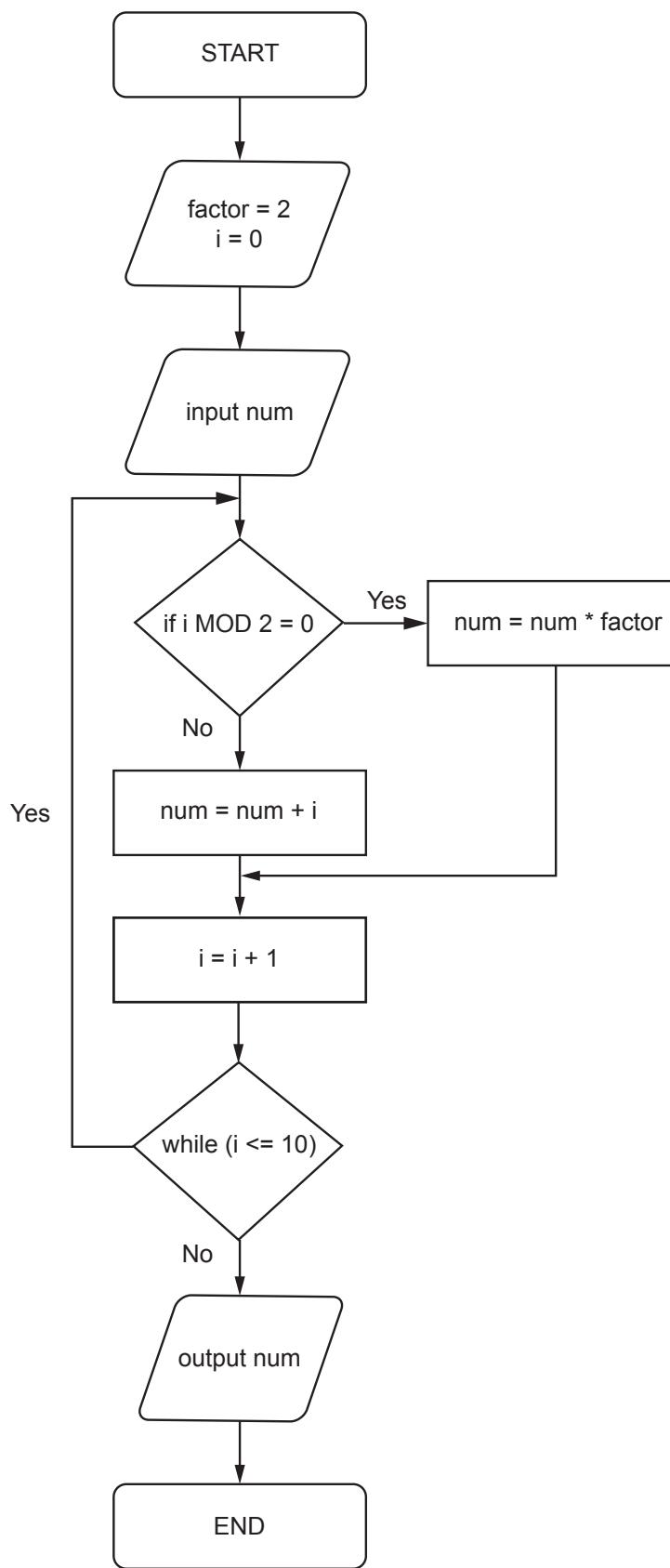
[8]

Examiner
only

6. Describe the difference between fixed and variable length records. Give an example of data that could be contained in each. [6]

7. Explain the difference between sequential and indexed sequential file access. [6]

Examiner
only


8. Describe computer-based processes that protect the security of data.

[4]

2500U101
09

9. Consider the constructs in the following algorithm.
Note: there is no need to dry-run the algorithm.

Identify and describe the purpose of the following constructs in the algorithm:

(a) Constant.

[2]

.....
.....
.....
.....

(b) Variable.

[2]

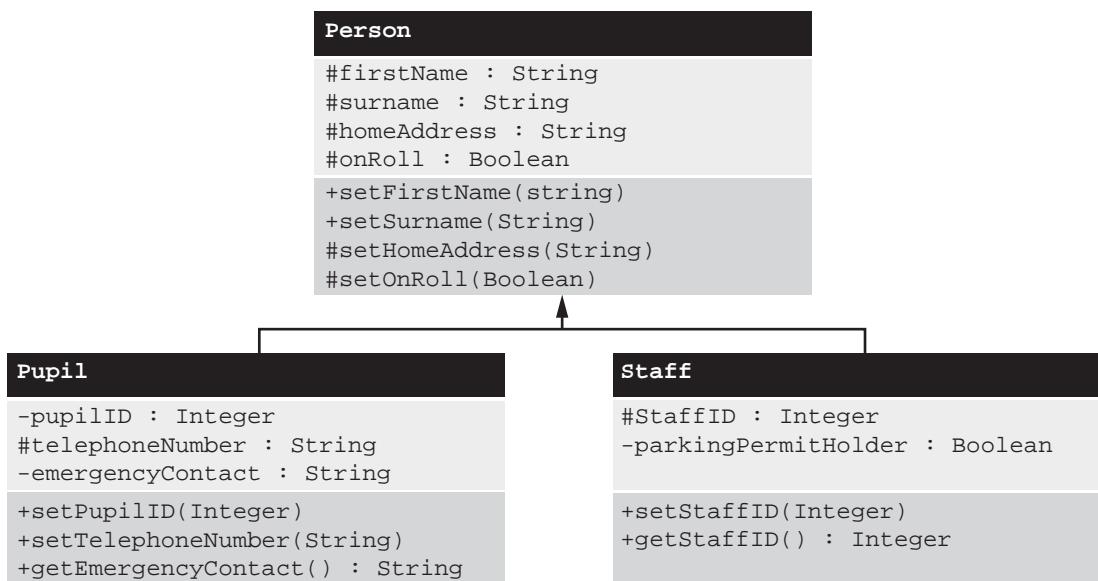
.....
.....
.....
.....

(c) Selection.

[2]

.....
.....
.....
.....

(d) Repetition.


[2]

.....
.....
.....
.....

10. Object-oriented programming is a paradigm that organises code into reusable, modular objects that can interact with each other to accomplish specific tasks.

Consider the following class diagram for a school:

(a) Describe the relationship between an object and a class. [2]

.....

.....

.....

.....

.....

(b) Give **one** example for each of the following from the class diagram opposite.

(i) Super class.

[1]

.....
.....

(ii) Sub class.

[1]

.....
.....

(iii) Method that does not require a parameter.

[1]

.....
.....

(c) Describe the difference between public, private and protected methods.

[3]

.....
.....
.....
.....
.....

Examiner
only

11. Describe the contents and use made of the following documentation:

(a) User documentation.

[4]

(b) Maintenance documentation.

[4]

12. Explain the role of Integrated Development Environment (IDE) tools in developing and debugging programs.

Examiner
only

13. Describe the following stages in the compilation process:

(a) Lexical analysis.

[3]

(b) Semantic analysis.

[3]

14. Describe the role of the operating system in providing a user interface and managing hardware resources. [10]

Examiner only

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

